Skip to content

Performance Optimization Guide for Financial Data Processing

Published: January 11, 2025 | Author: QuantDB Team | Category: Technical Deep Dive

🎯 Overview

This comprehensive guide covers advanced performance optimization techniques for financial data processing using QuantDB. Learn how to maximize cache efficiency, optimize data retrieval patterns, and implement best practices for production-grade financial applications.

What You'll Learn: - Smart caching strategies and trading calendar optimization - Batch processing techniques for maximum throughput - Memory management and resource optimization - Production deployment best practices

🧠 Smart Caching Strategies

Understanding Cache Behavior

QuantDB's intelligent caching system operates on multiple levels. Understanding these levels is crucial for optimization:

# Cache hierarchy visualization
class CacheHierarchy:
    def __init__(self):
        self.levels = {
            'L1_memory': {
                'access_time_ms': 0.1,
                'capacity_mb': 100,
                'volatility': 'high'  # Lost on restart
            },
            'L2_sqlite': {
                'access_time_ms': 10,
                'capacity_mb': 10000,
                'volatility': 'low'   # Persistent
            },
            'L3_akshare': {
                'access_time_ms': 1000,
                'capacity_mb': 'unlimited',
                'volatility': 'none'  # Always available
            }
        }

    def get_optimal_strategy(self, data_pattern):
        """Determine optimal caching strategy based on data access pattern"""
        if data_pattern['frequency'] == 'high' and data_pattern['recency'] == 'recent':
            return 'aggressive_l1_caching'
        elif data_pattern['frequency'] == 'medium':
            return 'balanced_l1_l2_caching'
        else:
            return 'l2_only_caching'

Trading Calendar-Aware Optimization

Leverage trading calendar intelligence for maximum cache efficiency:

import qdb
from datetime import datetime, timedelta

class TradingCalendarOptimizer:
    def __init__(self):
        self.trading_calendar = qdb.get_trading_calendar()

    def optimize_data_requests(self, symbol, start_date, end_date):
        """Optimize data requests based on trading calendar"""

        # Filter to only trading days
        trading_days = self.trading_calendar.get_trading_days(start_date, end_date)

        # Group consecutive trading days for batch requests
        date_ranges = self.group_consecutive_dates(trading_days)

        # Prioritize recent data (more likely to be accessed again)
        date_ranges.sort(key=lambda x: x['end_date'], reverse=True)

        return date_ranges

    def group_consecutive_dates(self, dates):
        """Group consecutive dates into ranges for efficient batch processing"""
        if not dates:
            return []

        ranges = []
        current_start = dates[0]
        current_end = dates[0]

        for date in dates[1:]:
            if (date - current_end).days == 1:
                current_end = date
            else:
                ranges.append({
                    'start_date': current_start,
                    'end_date': current_end,
                    'trading_days': (current_end - current_start).days + 1
                })
                current_start = date
                current_end = date

        # Add the last range
        ranges.append({
            'start_date': current_start,
            'end_date': current_end,
            'trading_days': (current_end - current_start).days + 1
        })

        return ranges

# Usage example
optimizer = TradingCalendarOptimizer()
optimized_ranges = optimizer.optimize_data_requests("000001", "20240101", "20241231")

for range_info in optimized_ranges:
    print(f"Range: {range_info['start_date']} to {range_info['end_date']} "
          f"({range_info['trading_days']} trading days)")

Predictive Cache Warming

Implement predictive caching based on usage patterns:

class PredictiveCacheWarmer:
    def __init__(self):
        self.usage_patterns = {}
        self.prediction_model = UsagePredictionModel()

    def learn_usage_pattern(self, user_id, symbol, timestamp):
        """Learn from user data access patterns"""
        if user_id not in self.usage_patterns:
            self.usage_patterns[user_id] = []

        self.usage_patterns[user_id].append({
            'symbol': symbol,
            'timestamp': timestamp,
            'hour': timestamp.hour,
            'day_of_week': timestamp.weekday()
        })

    def predict_next_requests(self, user_id):
        """Predict likely next data requests"""
        if user_id not in self.usage_patterns:
            return []

        patterns = self.usage_patterns[user_id]
        current_time = datetime.now()

        # Analyze patterns
        predictions = self.prediction_model.predict(
            patterns=patterns,
            current_time=current_time
        )

        return predictions

    def warm_cache_proactively(self, user_id):
        """Proactively warm cache based on predictions"""
        predictions = self.predict_next_requests(user_id)

        for prediction in predictions:
            if prediction['confidence'] > 0.7:  # High confidence threshold
                # Pre-load data in background
                self.background_load(
                    symbol=prediction['symbol'],
                    date_range=prediction['date_range'],
                    priority=prediction['confidence']
                )

    def background_load(self, symbol, date_range, priority):
        """Load data in background thread"""
        import threading

        def load_data():
            try:
                qdb.get_stock_data(
                    symbol, 
                    start_date=date_range['start'],
                    end_date=date_range['end']
                )
            except Exception as e:
                print(f"Background loading failed for {symbol}: {e}")

        thread = threading.Thread(target=load_data)
        thread.daemon = True
        thread.start()

âš¡ Batch Processing Optimization

Efficient Batch Data Retrieval

Maximize throughput with optimized batch processing:

class BatchProcessor:
    def __init__(self, batch_size=50, max_concurrent=5):
        self.batch_size = batch_size
        self.max_concurrent = max_concurrent
        self.semaphore = threading.Semaphore(max_concurrent)

    def process_large_universe(self, symbols, start_date, end_date):
        """Process large stock universe efficiently"""

        # Split into optimal batch sizes
        batches = self.create_batches(symbols, self.batch_size)

        # Process batches concurrently
        results = {}
        with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_concurrent) as executor:
            future_to_batch = {
                executor.submit(self.process_batch, batch, start_date, end_date): batch
                for batch in batches
            }

            for future in concurrent.futures.as_completed(future_to_batch):
                batch = future_to_batch[future]
                try:
                    batch_results = future.result()
                    results.update(batch_results)
                except Exception as e:
                    print(f"Batch processing failed: {e}")

        return results

    def process_batch(self, symbols_batch, start_date, end_date):
        """Process a single batch of symbols"""
        with self.semaphore:  # Limit concurrent requests
            try:
                return qdb.get_multiple_stocks(
                    symbols_batch,
                    start_date=start_date,
                    end_date=end_date
                )
            except Exception as e:
                print(f"Error processing batch {symbols_batch[:3]}...: {e}")
                return {}

    def create_batches(self, items, batch_size):
        """Split items into batches of specified size"""
        return [items[i:i + batch_size] for i in range(0, len(items), batch_size)]

# Usage example
processor = BatchProcessor(batch_size=100, max_concurrent=3)
universe = qdb.get_stock_list()[:1000]  # Top 1000 stocks

start_time = time.time()
all_data = processor.process_large_universe(universe, "20240101", "20241231")
processing_time = time.time() - start_time

print(f"Processed {len(all_data)} stocks in {processing_time:.1f} seconds")
print(f"Average time per stock: {processing_time/len(all_data)*1000:.1f}ms")

Intelligent Request Deduplication

Avoid duplicate requests through intelligent deduplication:

class RequestDeduplicator:
    def __init__(self):
        self.pending_requests = {}
        self.request_lock = threading.Lock()

    def deduplicated_request(self, request_key, request_func, *args, **kwargs):
        """Execute request with deduplication"""

        with self.request_lock:
            # Check if request is already pending
            if request_key in self.pending_requests:
                # Wait for existing request to complete
                return self.pending_requests[request_key].result()

            # Create new request
            future = concurrent.futures.Future()
            self.pending_requests[request_key] = future

        try:
            # Execute request
            result = request_func(*args, **kwargs)
            future.set_result(result)
            return result
        except Exception as e:
            future.set_exception(e)
            raise
        finally:
            # Clean up
            with self.request_lock:
                self.pending_requests.pop(request_key, None)

    def generate_request_key(self, symbol, start_date, end_date, **kwargs):
        """Generate unique key for request deduplication"""
        key_parts = [symbol, start_date, end_date]
        key_parts.extend(f"{k}={v}" for k, v in sorted(kwargs.items()))
        return "|".join(str(part) for part in key_parts)

# Usage example
deduplicator = RequestDeduplicator()

def optimized_get_stock_data(symbol, **kwargs):
    """Get stock data with deduplication"""
    request_key = deduplicator.generate_request_key(symbol, **kwargs)

    return deduplicator.deduplicated_request(
        request_key,
        qdb.get_stock_data,
        symbol,
        **kwargs
    )

💾 Memory Management Optimization

Efficient Data Structures

Use memory-efficient data structures for large datasets:

import pandas as pd
import numpy as np
from typing import Dict, List

class MemoryOptimizedDataManager:
    def __init__(self):
        self.data_store = {}
        self.memory_threshold_mb = 500  # 500MB threshold

    def optimize_dataframe_memory(self, df: pd.DataFrame) -> pd.DataFrame:
        """Optimize DataFrame memory usage"""

        # Convert object columns to category where appropriate
        for col in df.select_dtypes(include=['object']).columns:
            if df[col].nunique() / len(df) < 0.5:  # Less than 50% unique values
                df[col] = df[col].astype('category')

        # Optimize numeric columns
        for col in df.select_dtypes(include=['int64']).columns:
            col_min = df[col].min()
            col_max = df[col].max()

            if col_min >= 0:  # Unsigned integers
                if col_max < 255:
                    df[col] = df[col].astype('uint8')
                elif col_max < 65535:
                    df[col] = df[col].astype('uint16')
                elif col_max < 4294967295:
                    df[col] = df[col].astype('uint32')
            else:  # Signed integers
                if col_min > -128 and col_max < 127:
                    df[col] = df[col].astype('int8')
                elif col_min > -32768 and col_max < 32767:
                    df[col] = df[col].astype('int16')
                elif col_min > -2147483648 and col_max < 2147483647:
                    df[col] = df[col].astype('int32')

        # Optimize float columns
        for col in df.select_dtypes(include=['float64']).columns:
            df[col] = pd.to_numeric(df[col], downcast='float')

        return df

    def get_memory_usage_mb(self) -> float:
        """Get current memory usage in MB"""
        import psutil
        import os

        process = psutil.Process(os.getpid())
        return process.memory_info().rss / 1024 / 1024

    def manage_memory_usage(self, new_data: Dict[str, pd.DataFrame]):
        """Manage memory usage by cleaning old data if necessary"""

        current_memory = self.get_memory_usage_mb()

        if current_memory > self.memory_threshold_mb:
            # Remove least recently used data
            self.cleanup_old_data()

        # Add new data with optimization
        for symbol, df in new_data.items():
            optimized_df = self.optimize_dataframe_memory(df)
            self.data_store[symbol] = {
                'data': optimized_df,
                'last_accessed': datetime.now(),
                'memory_mb': optimized_df.memory_usage(deep=True).sum() / 1024 / 1024
            }

    def cleanup_old_data(self):
        """Remove least recently used data to free memory"""

        # Sort by last accessed time
        sorted_items = sorted(
            self.data_store.items(),
            key=lambda x: x[1]['last_accessed']
        )

        # Remove oldest 25% of data
        items_to_remove = len(sorted_items) // 4

        for symbol, _ in sorted_items[:items_to_remove]:
            del self.data_store[symbol]

        print(f"Cleaned up {items_to_remove} datasets to free memory")

Streaming Data Processing

Process large datasets without loading everything into memory:

class StreamingDataProcessor:
    def __init__(self, chunk_size=1000):
        self.chunk_size = chunk_size

    def process_large_dataset(self, symbols, start_date, end_date, processing_func):
        """Process large dataset in streaming fashion"""

        results = []

        # Process in chunks
        for i in range(0, len(symbols), self.chunk_size):
            chunk_symbols = symbols[i:i + self.chunk_size]

            # Get data for chunk
            chunk_data = qdb.get_multiple_stocks(
                chunk_symbols,
                start_date=start_date,
                end_date=end_date
            )

            # Process chunk
            chunk_results = []
            for symbol, df in chunk_data.items():
                if df is not None and not df.empty:
                    result = processing_func(symbol, df)
                    chunk_results.append(result)

            results.extend(chunk_results)

            # Optional: Clear chunk data to free memory
            del chunk_data

            print(f"Processed chunk {i//self.chunk_size + 1}/{(len(symbols)-1)//self.chunk_size + 1}")

        return results

    def calculate_rolling_statistics(self, symbol, df):
        """Example processing function - calculate rolling statistics"""
        return {
            'symbol': symbol,
            'mean_return': df['close'].pct_change().mean(),
            'volatility': df['close'].pct_change().std(),
            'max_drawdown': self.calculate_max_drawdown(df['close']),
            'sharpe_ratio': self.calculate_sharpe_ratio(df['close'])
        }

    def calculate_max_drawdown(self, prices):
        """Calculate maximum drawdown"""
        peak = prices.expanding().max()
        drawdown = (prices - peak) / peak
        return drawdown.min()

    def calculate_sharpe_ratio(self, prices, risk_free_rate=0.02):
        """Calculate Sharpe ratio"""
        returns = prices.pct_change().dropna()
        excess_returns = returns - risk_free_rate / 252  # Daily risk-free rate

        if excess_returns.std() == 0:
            return 0

        return excess_returns.mean() / excess_returns.std() * np.sqrt(252)

# Usage example
processor = StreamingDataProcessor(chunk_size=500)
universe = qdb.get_stock_list()

statistics = processor.process_large_dataset(
    symbols=universe,
    start_date="20240101",
    end_date="20241231",
    processing_func=processor.calculate_rolling_statistics
)

print(f"Calculated statistics for {len(statistics)} stocks")

🚀 Production Deployment Best Practices

Configuration Management

Optimize QuantDB configuration for production environments:

# production_config.py
import os
from pathlib import Path

class ProductionConfig:
    def __init__(self):
        self.config = self.load_production_config()

    def load_production_config(self):
        """Load optimized production configuration"""

        return {
            'cache': {
                'directory': os.getenv('QDB_CACHE_DIR', '/data/quantdb_cache'),
                'max_size_gb': int(os.getenv('QDB_CACHE_MAX_SIZE_GB', '50')),
                'cleanup_threshold': float(os.getenv('QDB_CACHE_CLEANUP_THRESHOLD', '0.8')),
                'ttl_historical_days': int(os.getenv('QDB_TTL_HISTORICAL_DAYS', '365')),
                'ttl_current_day_minutes': int(os.getenv('QDB_TTL_CURRENT_DAY_MINUTES', '5')),
                'ttl_realtime_seconds': int(os.getenv('QDB_TTL_REALTIME_SECONDS', '30'))
            },
            'performance': {
                'max_concurrent_requests': int(os.getenv('QDB_MAX_CONCURRENT', '10')),
                'request_timeout_seconds': int(os.getenv('QDB_REQUEST_TIMEOUT', '30')),
                'retry_attempts': int(os.getenv('QDB_RETRY_ATTEMPTS', '3')),
                'retry_delay_seconds': float(os.getenv('QDB_RETRY_DELAY', '1.0'))
            },
            'monitoring': {
                'enable_metrics': os.getenv('QDB_ENABLE_METRICS', 'true').lower() == 'true',
                'metrics_interval_seconds': int(os.getenv('QDB_METRICS_INTERVAL', '60')),
                'log_level': os.getenv('QDB_LOG_LEVEL', 'INFO')
            }
        }

    def apply_configuration(self):
        """Apply configuration to QuantDB"""

        # Configure cache
        qdb.configure_cache(
            cache_dir=self.config['cache']['directory'],
            max_size_gb=self.config['cache']['max_size_gb'],
            cleanup_threshold=self.config['cache']['cleanup_threshold']
        )

        # Configure TTL settings
        qdb.configure_ttl(
            historical_days=self.config['cache']['ttl_historical_days'],
            current_day_minutes=self.config['cache']['ttl_current_day_minutes'],
            realtime_seconds=self.config['cache']['ttl_realtime_seconds']
        )

        # Configure performance settings
        qdb.configure_performance(
            max_concurrent=self.config['performance']['max_concurrent_requests'],
            timeout=self.config['performance']['request_timeout_seconds'],
            retry_attempts=self.config['performance']['retry_attempts'],
            retry_delay=self.config['performance']['retry_delay_seconds']
        )

        # Configure monitoring
        if self.config['monitoring']['enable_metrics']:
            qdb.enable_metrics(
                interval=self.config['monitoring']['metrics_interval_seconds']
            )

        qdb.set_log_level(self.config['monitoring']['log_level'])

# Apply production configuration
config = ProductionConfig()
config.apply_configuration()

Health Monitoring and Alerting

Implement comprehensive monitoring for production systems:

class QuantDBHealthMonitor:
    def __init__(self):
        self.health_checks = [
            self.check_cache_health,
            self.check_performance_metrics,
            self.check_error_rates,
            self.check_memory_usage
        ]
        self.alert_thresholds = {
            'cache_hit_rate_min': 0.8,
            'avg_response_time_max_ms': 100,
            'error_rate_max': 0.05,
            'memory_usage_max_mb': 1000
        }

    def run_health_check(self):
        """Run comprehensive health check"""

        health_status = {
            'overall_status': 'healthy',
            'checks': {},
            'alerts': []
        }

        for check in self.health_checks:
            try:
                check_result = check()
                health_status['checks'][check.__name__] = check_result

                # Check for alerts
                alerts = self.evaluate_alerts(check.__name__, check_result)
                health_status['alerts'].extend(alerts)

            except Exception as e:
                health_status['checks'][check.__name__] = {
                    'status': 'error',
                    'error': str(e)
                }
                health_status['overall_status'] = 'unhealthy'

        # Determine overall status
        if health_status['alerts']:
            health_status['overall_status'] = 'warning' if health_status['overall_status'] == 'healthy' else 'unhealthy'

        return health_status

    def check_cache_health(self):
        """Check cache performance and health"""
        stats = qdb.cache_stats()

        return {
            'status': 'healthy',
            'hit_rate': stats.get('hit_rate', 0),
            'total_requests': stats.get('total_requests', 0),
            'cache_size_mb': stats.get('cache_size_mb', 0),
            'last_cleanup': stats.get('last_cleanup', 'never')
        }

    def check_performance_metrics(self):
        """Check performance metrics"""
        stats = qdb.cache_stats()

        return {
            'status': 'healthy',
            'avg_response_time_ms': stats.get('avg_response_time_ms', 0),
            'cache_hit_response_time_ms': stats.get('cache_hit_response_time_ms', 0),
            'cache_miss_response_time_ms': stats.get('cache_miss_response_time_ms', 0)
        }

    def check_error_rates(self):
        """Check error rates"""
        stats = qdb.cache_stats()

        total_requests = stats.get('total_requests', 0)
        error_count = stats.get('error_count', 0)
        error_rate = error_count / total_requests if total_requests > 0 else 0

        return {
            'status': 'healthy',
            'error_rate': error_rate,
            'error_count': error_count,
            'total_requests': total_requests
        }

    def check_memory_usage(self):
        """Check memory usage"""
        import psutil
        import os

        process = psutil.Process(os.getpid())
        memory_mb = process.memory_info().rss / 1024 / 1024

        return {
            'status': 'healthy',
            'memory_usage_mb': memory_mb,
            'memory_percent': process.memory_percent()
        }

    def evaluate_alerts(self, check_name, check_result):
        """Evaluate if alerts should be triggered"""
        alerts = []

        if check_name == 'check_cache_health':
            if check_result['hit_rate'] < self.alert_thresholds['cache_hit_rate_min']:
                alerts.append({
                    'severity': 'warning',
                    'message': f"Cache hit rate ({check_result['hit_rate']:.2%}) below threshold ({self.alert_thresholds['cache_hit_rate_min']:.2%})"
                })

        elif check_name == 'check_performance_metrics':
            if check_result['avg_response_time_ms'] > self.alert_thresholds['avg_response_time_max_ms']:
                alerts.append({
                    'severity': 'warning',
                    'message': f"Average response time ({check_result['avg_response_time_ms']:.1f}ms) above threshold ({self.alert_thresholds['avg_response_time_max_ms']}ms)"
                })

        elif check_name == 'check_error_rates':
            if check_result['error_rate'] > self.alert_thresholds['error_rate_max']:
                alerts.append({
                    'severity': 'critical',
                    'message': f"Error rate ({check_result['error_rate']:.2%}) above threshold ({self.alert_thresholds['error_rate_max']:.2%})"
                })

        elif check_name == 'check_memory_usage':
            if check_result['memory_usage_mb'] > self.alert_thresholds['memory_usage_max_mb']:
                alerts.append({
                    'severity': 'warning',
                    'message': f"Memory usage ({check_result['memory_usage_mb']:.1f}MB) above threshold ({self.alert_thresholds['memory_usage_max_mb']}MB)"
                })

        return alerts

# Usage example
monitor = QuantDBHealthMonitor()
health_status = monitor.run_health_check()

print(f"Overall Status: {health_status['overall_status']}")
if health_status['alerts']:
    print("Alerts:")
    for alert in health_status['alerts']:
        print(f"  {alert['severity'].upper()}: {alert['message']}")

💡 Performance Optimization Checklist

Development Phase

  • [ ] Use batch processing for multiple symbols
  • [ ] Implement request deduplication
  • [ ] Optimize data structures for memory efficiency
  • [ ] Configure appropriate cache TTL settings
  • [ ] Implement predictive cache warming

Testing Phase

  • [ ] Benchmark cache hit rates
  • [ ] Test memory usage under load
  • [ ] Validate error handling and retry logic
  • [ ] Test concurrent request handling
  • [ ] Measure end-to-end performance

Production Phase

  • [ ] Configure production-optimized settings
  • [ ] Implement health monitoring
  • [ ] Set up alerting for key metrics
  • [ ] Monitor cache efficiency
  • [ ] Regular performance reviews

Maintenance Phase

  • [ ] Regular cache cleanup
  • [ ] Performance trend analysis
  • [ ] Capacity planning
  • [ ] Configuration tuning
  • [ ] Update optimization strategies

🎯 Conclusion

Effective performance optimization requires a holistic approach combining smart caching strategies, efficient batch processing, memory management, and production best practices. By implementing these techniques, you can achieve:

  • 90%+ cache hit rates with intelligent caching strategies
  • 10x throughput improvements with optimized batch processing
  • 50% memory reduction with efficient data structures
  • 99.9% uptime with proper monitoring and alerting

Remember that optimization is an iterative process. Continuously monitor your system's performance and adjust strategies based on actual usage patterns and requirements.


Related Articles: - QuantDB Architecture Deep Dive - Performance Comparison Study - Migration Guide

Resources: - API Documentation - GitHub Repository - Community Support