Frequently Asked Questions (FAQ)¶
🔧 Installation & Setup¶
Q: How do I resolve dependency conflicts?¶
A: Use a virtual environment to isolate dependencies:
python -m venv quantdb_env
# Linux/Mac
source quantdb_env/bin/activate
# Windows (PowerShell)
quantdb_env\Scripts\Activate.ps1
pip install quantdb
Q: How can I upgrade to the latest version?¶
A:
pip install --upgrade quantdb
Q: Which Python versions are supported?¶
A: Python 3.8 and above. We recommend Python 3.9+ for best performance.
📊 Data Fetching¶
Q: Why is the data sometimes not up-to-date?¶
A: Due to caching. You can:
- Clear cache: qdb.clear_cache()
- Use fresh fetch where available: qdb.get_realtime_data(symbol, force_refresh=True)
- Note: TTL is managed internally in this version; there are no set_cache_expire
/ disable_cache
functions.
Q: How do I fetch more historical data?¶
A: Use date parameters:
data = qdb.stock_zh_a_hist(
symbol="000001",
start_date="20200101",
end_date="20241231"
)
Q: Which markets are supported?¶
A: Currently focusing on: - Mainland China A-shares (SSE/SZSE) - Hong Kong market - US market (partial support)
⚡ Performance¶
Q: How can I speed up data fetching?¶
A: Tips: 1. Keep cache enabled (default) 2. Use reasonable intervals when fetching in batch 3. Warm up cache for frequently used symbols 4. Periodically purge expired cache
Q: Cache database grows too large, what can I do?¶
A:
- Clear cache periodically: qdb.clear_cache()
- Manually delete the cache DB file if needed (default: in your qdb cache dir)
- Note: TTL is managed internally; there is no set_cache_expire()
function in this version
Q: How to inspect cache usage?¶
A:
stats = qdb.cache_stats()
print(stats) # e.g. {'cache_dir': '...', 'cache_size_mb': 12.34, 'initialized': True, 'status': 'Running'}
🐛 Errors & Troubleshooting¶
Q: Network errors?¶
A: Check: 1. Network connectivity 2. Firewall/Proxy constraints 3. Data source availability 4. Consider using a proxy or VPN if needed
Q: Unexpected data format?¶
A: Possible reasons: - Invalid symbol format (e.g., use "000001" not "1") - Wrong date format (use "YYYYMMDD") - Temporary data source changes
Q: It runs slow, how to diagnose?¶
A: 1. First run downloads data — subsequent runs will be faster 2. Ensure cache is enabled 3. Check network speed 4. Reduce time range
🔄 Keeping data fresh¶
Q: How to ensure latest data?¶
A:
# Option 1: Force refresh where supported
rt = qdb.get_realtime_data("000001", force_refresh=True)
# Option 2: Clear all cache (symbol-level clearing not yet implemented in simplified mode)
qdb.clear_cache()
# Option 3: Bypass cache by using a narrower date range if needed
hist = qdb.stock_zh_a_hist("000001", start_date="20250101", end_date="20250131")
Note: TTL is managed internally in this version.
Q: Update frequency?¶
A: - Realtime quotes: often delayed ~15 minutes - Daily data: updated after market close - Financials: quarterly updates
🛠️ Integration¶
Q: Production usage best practices?¶
A: 1. Use a dedicated database path 2. Tune TTL to your workload 3. Add retry logic 4. Monitor cache usage regularly
Q: Can I combine with other data sources?¶
A: Yes. QuantDB is primarily a cache layer for AKShare, but you can: - Combine multiple sources - Validate and clean data - Build your own data pipelines
Q: How to contribute or report issues?¶
A: - GitHub Issues: https://github.com/franksunye/quantdb/issues - Pull Requests welcome - Join Discussions
📚 More help¶
If you didn’t find your answer:
- See the User Guide
- See the API Reference
- Open an Issue on GitHub